L

; OURNAL OF
5 :

;ﬁ GEOMETRY anp
PHYSICS
ELSEVIER Journal of Geometry and Physics 34 (2000) 137-154

Bloch theory and quantization of magnetic systems

Michael J. Gruber

Institut fir Mathematik, Humboldt-Universitat zu Berlin, D-10099 Berlin, Germany

Received 26 April 1999; received in revised form 13 July 1999

Abstract

Quantizing the motion of particles on a Riemannian manifold in the presence of a magnetic
field poses the problems of existence and uniqueness of quantizations. Both of them are considered
since the early days of geometric quantization but there is still some structural insight to gain
from spectral theory. Following the work of Asch et al. (Magnetic Bloch analysis and Bochner
Laplacians, J. Geom. Phys. 13 (3) (1994) 275-288) for the 2-torus we describe the relation between
quantization on the manifold and Bloch theory on its covering space for more general compact
manifolds. © 2000 Elsevier Science B.V. All rights reserved.

Sub. ClassQuantum mechanics

MSC:81S10 (primary); 58F06; 58G25; 81Q10 (secondary)
PACS:02.40.Vh (primary); 03.65; 02.30 (secondary)

Keywords:Geometric quantization; Spectral theory; Bloch theory; Bochner Laplacian; Schrédinger operator;
Magnetic fields

1. Introduction

In geometric quantization for symplectic manifolds one is faced with questions of exis-
tence and uniqueness (see e.g. [23,25] which do not arise for the common phag&‘gpace
(with standard symplectic structure) of Hamiltonian mechanics. But, when incorporating
magnetic fields (closed 2-fornbse ©2(M)) into the picture one is forced either to choose
magnetic potentials(e Q1(M) with da = b) or to “charge” the standard symplectic struc-
ture by the magnetic field (see Remark 1 below). In either case, the questions of existence
and uniqueness come up now even for the phase spfalfe Indeed, these questions arise
for prequantizations, whereas — given a prequantization — there is a canonical choice of
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a quantization when the phase spacg&ia/ with a charged symplectic structure (at least
for Hamiltonians linear in the momenta; see Remark 2).

On the other hand, the cohomological obstructions and degrees of freedom for geometric
quantization vanish on the covering spate= M. Since the classical Hamiltonian system
may be lifted fromM to X one may try to quantize ol and push the quantization down
to M again. This push down is possible if and only if the systemMbnis quantizable.

But quantization ornX is unique, so one may ask which quantizationsMrone gets by

this procedure, and how to recover the other quantization& dnom that onX. Since

the magnetic Schrodinger operatlr arising from a gquantization oX is periodic (any
operator arising from a periodic classical symbol is) one can, in the case of abelian covering
group, analyze it using Bloch theory. This gives a decompostidii ofto a direct integral

of operators (the “fibers” off) acting on line bundles ove . It turns out that the fibers are
unitarily equivalent to magnetic Schrédinger operators arising from quantizations, on

and that the direct integral runs just over all classes of quantizations, arsing a natural
integration measure. This follows the ideas of [1] who did the same work for the 2-torus.

1.1. Outline

In Section 2, we recall the definitions (quantization of a system with magnetic field,
equivalence of quantizations) and the appropriate cohomology groups. All of that is known
from the standard literature on geometric quantization, so we will not give references to the
results individually.

In Section 3, we describe the connections between sets of equivalence classes of quan-
tizations, as determined in the previous section, and representations of the fundamental
group.

In Section 4, we recall Bloch theory in the geometric context of periodic operators acting
on sections of vector bundles.

In Section 5, we analyze the Bloch decomposition for Schrédinger operators with mag-
netic fields, identify the fibers of this decomposition (Theorem 7) and draw our final con-
clusions about the relation to quantization (Corollary 2).

2. Equivalence classes of quantizations

Remark 1 (Minimal coupling). Lorentz force is described in Newton’s equations of clas-
sical mechanics using a magnetic fiside C>°(TR3) ~ Q2(R3) (“axial vector field”).
When trying to incorporate it into the formalism of Lagrange or Hamilton mechanics,
one is faced with the necess{ty, at least, utility of introducing a vector potential <
C>®(TR3 ~ QL(R3) (“polar vector field”) such thath = da (b is divergence free,
i.e. closed; sincé2,(R3) = 0, b is exac). A Hamiltoniank € C*(TR3) is replaced

by h, : (x, p) — h(x, p — qa(x)) (electric chargey), the so-called minimally coupled
Hamiltonian. Doing this for a free particl€s(x, p) = (1/2m)|p|?, massm) one gets
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ha(x, p) = (1/2m)|p — qa(x)|? which suggests using, = (1/2m) ((h/)V — a)? as the
Hamiltonian in quantum mechanics, whéfedenotes gradient ifR3. V — (i/h)a may be
viewed as connection on the trivial complex line burigifex C. Note especially that the
curvature is given bgurv(V — (i /h)a) = (1/h)da = (1/k)b if we identify the Lie algebra
of U(1) with R in a suitable mannef—iv — v € R).
In the case of non-exact magnetic fields (on a maniélaith non-trivial HdZR(M)) one
can, in general, only find local vector potentials and local connections on locally trivial
complex line bundles. If everything fits together “nicely” one gets a global connection on
a (global) complex line bundle with curvatutg/h)b. This motivates Definitiof.
Another aspect of Definitioh is given by the point of view of geometric quantization.

It rests on the observation that Hamiltonian mechanics with a (closed) magnetio feeld
Q2(M) can be formulated without any magnetic vector potential if one uses a “charged”
symplectic formv, = w + b on N := T*M, wherew is the canonical symplectic form on
T*M andb the pull-backr*b of b from M to T* M by the projectionr : T*M — M ontothe
base points. A prequantization of such a system is given by a Hermitian line bk
T*M with connection (covariant derivativé) such thati curv(V) = wj. A quantization
is a prequantization together with a complex polarizat®mf N. A complex polarization
of N = T*M is a complex distribution (i.e. a familgP, ),y 0of complex subspaces of
the complexified tangent space d,Nocally defined by smooth frames) with the following
properties:

1. Every P, is Lagrangian with respect to the complexified symplectic structure.

2. dimP N P N TN is constant o .

3. Pisintegrable, i.e. closed with respect to Lie brackets.
Since our symplectic manifold is a cotangent space with (vertically) charged symplectic form
there is a canonical polarization given by the fibration owémwith fiber (7, M)c, x € M,
the vertical polarization. To be definite: the corresponding distributioviHis= (kerT'z)c.
Polarized sections ir. with respect to this polarization can be viewed as sections into
a complex line bundl&. over M with 7*L = L. SuchL exist because the fibers of:
T*M — M are contractible;L can be constructed as pull-back by tsection inT*M.
Finally, V induces a connectioW on L with curvatureb.

Remark 2 (Geometric quantization and Bochner Laplaciarig)general, geometric quan-
tization provides for means to quantize classical observables whose associated Hamiltonian
flow preserves the chosen polarization. In the case of a cotangent gpafevith the ver-

tical polarization mentioned above, this restricts quantization to Hamiltonians linear in the
momenta in general. There are several methods to overcome this.

Either one searches for polarizations which are invariant under the given flow. This has
been considered especially for the geodesic flow on splie2ésand the Kepler problem
[18,21].

Or one uses the Blattner—Kostant—Sternberg pairing for polarizat{8r&,11,14,22].

Here one may produce non-symmetric operators in general.

A third approach — leaving the setting of geometric quantization — consists of mimicking

the Euclidean Weyl quantization (or other orderings), using normal coorditfiifed 7,24].
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The results depend on the choice of ordering (Weyl, normal, antinormal), wave functions
(functions or half-densities) and even ones Euclidean point of view (dilations may introduce
curvature terms).

In any case, the free particle Hamiltonian given by a Riemannian metric is quantized to
A+ a R, where we choose the conventiare 0, R denotes scalar curvature, is rational
and non-negative. Even path integral methods and Maslov quantization lead to the same
type of operator. In physics, the Laplacian is accepted as the quantization of the free particle
as well as the Bochner—Laplacian is for the particle in a magnetic field.

Since we intend to include a smooth potential V in the Schrédinger operator anyway,
one may cover any scalar curvature terms arising from some choice of quantization. To
be more specific: in Sectids) we deal with periodic potentials and magnetic fields. Since
we demand the metric to be periodic also, any curvature term will be so and will simply
descend to the quotient. Therefoigheorem?7 and Corollary 2 hold for any consistent
choice of quantization (i.e. choosinghe same on covering and quotient), not only for the
choicea = 0 made in Definitior.

In the sequel we choose units with=1,¢ = 1, 2m = 1.

Definition 1 (Quantization with magnetic field). L&, g) be an orientable Riemannian
manifold,b € Q?(M) aclosed real-valued 2-form (theagnetic fieldl A quantizatiorof the
particle motion oM, g) in the presence of the magnetic fiélg given by a Hermitian line
bundle(L, i, V) overM with connection such that cufvV) = b. Themagnetic Schrodinger
operatoris defined by th&ochner—Laplacian

HLY = vV with domain D(HLY) = CP(L) (1)
in the Hilbert spacé.?(L) of square-integrable sectionsbfdefined byg andh. Here,VJr
is the formal adjoint ov.

Remark 3 (Self-adjointness) SinceH -V is symmetric and bounded below @yhere is a
canonical self-adjoint extension given by the Friedrichs extenHé)ﬁ .Itisthe self-adjoint
operator associated to the closure of the symmetric form

q(f.8) = (f H"Vg) = (Vf,V,g)
with (form) domainQ(g) = D(HL-V).

Remark 4 (Equivalence classes of line bundle§)enote byG,, the sheaf of germs of
smoothG-valued functions o for any abelian Lie grouis. Every complex line bundle L
over M is defined by €ech cocycléc,p) € Z1(M, C*,,). Given anylyg) € CXH(M, C,,)
with exp 2rilys = cqp ONe hassl € Z%(M,Z,,) = Z?(M,Z). Here § denotesCech
codifferential. Other choiceX fulfill I/ — I € C1(M, Z), so thats! and s’ define the same
class inH2(M, Z) , and the mapping

jiHYM,C*,,) - HX(M,Z), ¢+ 5l

is well-defined
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Every line bundle isomorphism from ¢ &6 corresponds to &ech cochain(f,) €
COM, C%,)), ¢’ = csf.

H?(M, Z) parametrizes the set of equivalence classes of complex line bundles: the short
exact sequence of sheaves

052 C, " cx,, >0, )

where
exp 2ri- : C 3 z —~ exp2riz) € C*,
induces the following long exact sequenc€ach cohomology:

0— HOM,Z,) — H'M,C,,) - HOM,C%,,) —
— HYM,Z,,) - HY\(M,C,;) — HY(M,C*,;,)—/
[ [
HY (M, 7) 0 (3
—IH?(M,Z,;) — H>(M,C,;) —
[ [
H%(M,7) 0

SoH! (M, QM)éH"“(M, 7) for everyi > 1, and the joining homomorphism j is just
the mapping described before. The classfifi(M, Z) characterizing L is called the first
Chern class:1(L) of L.

Every Hermitian line bundléL, &) is defined by &@c,) € Z*(M, St,,) every Hermitian
line bundle isomorphism (i.e. every isometry) by samg € CO(M, §1,,) , ¢’ = céf.
Using the short exact sequence

0—>Z— EMeXp—gﬂbS_lM -0 (4)
and the corresponding long exact sequend@doh cohomology one gets ag&lh( M, a7

éH"“(M, Z) fori > 1, and j comes from the mappirdgo (log - /2ri) on cochains as
before.

Finally we recall that the group structure induced &ht(M, C*,,) and H(M, S*,,)
by the coefficient groups is just the tensor product of line bundles.

Remark 5 (Integral de Rham class)lhe short exact sequence of groups
0 ZHR¥PZ g1, 0 5)

induces the long exact sequence of cohomology groups
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0.
0 - HWM2z) ™ HOM.R) - HOM.SY) —
N
0
l.
> wwmzy P HY MR - HYM.SYH — (6)
/!
0
. 2.
5 omrmzy " BH2MR) -

A de Rham class is called integral if it is contained in the rang&/ & ).

Remark 6 (Curvature and Chern clasdyor every line bundle with connection one has
H*(i)(c1(L)) = [—(1/2m)curv(V)] , using the identification-iR ~ R as in the in-
troduction. This can be seen for example using Deligne cohomology with coefficients in
R(2) := (27i)2R ([5], Chapterl for these notions): Let. = § (logc/2ri) € ZA(M, Z)
as in Remark 4 represenrt;(L) for some choice of logarithmig,z. This defines a
cocycle inZ?(M, R(2)%) given by(—(2ri)?u, —2riloge, —27a) , and from a propo-
sition on Deligne cohomology groug#? (M, R(p)%) (ibidem, Lemmal.5.4) one gets
—2r)2H* () (1)) = —2r[da] € H?(M, R) using theCech—de Rham isomorphism

This connection between curvature and Chern class immediately implies

Theorem 1 (Existence of quantizationsA system with magnetic field?, g, b) is quan-
tizable if and only if the de Rham class(@f2x)b is integral

Definition 2 (Equivalence of quantizations). Two quantizations given(byh, V) and
(L', h', V') are callecequivalentf there is a Hermitian line bundle isomorphisim: L —
L' intertwining the connections:

Vs € C¥(L) : VX € C¥(TM) : ® o Vys = Vx (o s). )

Remark 7 (Unitary equivalence)lf (L, h, V) and(L’, i/, V') are two quantizations equiv-
alent via®, then
Ug : L3(L) — L*(L"),
s> Ups . =dos,
defines a unitary operator intertwining the magnetic Schrddinger operators:
UpHYY = HY V' U,
Conversely, ifUg is unitary then® is a Hermitian isomorphism. Eqg. (7) is just the

intertwining property for first order operators defined as quantizations of vector fields

Remark 8 (Local form of the gauge)We choose a cochaifi € CO(M, S_lM) representing
the isomorphismb, i.e. ¢, o ® o goﬂjl = idy x fy , and cocyclegc, a) and (¢, a’)

for (L, h, V) and (L', k', V') with respect to bundle chartg, : L|y, — U, x C and
¢, : L'ly, = Uy x C. Then one easily calculates

i(a), — ay) = f;*dfy = dlogf,. (8)
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Remark 9 (2-term complex).The “second half” of the condition for the Deligne cocycle
inRemark 6, i.e—i(da)op = —dlogeqp , can be viewed as cochain condition in the 2-term
complex of sheaves

KO :=s?t
K = | idlog (9)
Kt:=0ly,

HereQ!,, denotes the sheaf @eal-valued 1-forms onM.

(c, —a) defines a cocycle, hence it defines a class in the hypercohomalbgy, K)
of K ; in ([5], Chapter2) it is shown that this class does not depend on the choice of line
bundle isomorphism,g and connection formg, ; moreover, it parametrizes isomorphism
classes of line bundles with connection:

Theorem 2(Quantization classes)he set of Hermitian isomorphism classes of Hermitian
line bundles with connection on a Riemannian manifold M is given by the hypercohomology
group H1(M, K) of the complex of sheaves(kee(9)).

Since we are interested in quantizations for a given magnetic field, we will elaborate on
isomorphism classes for fixddandb:

Theorem 3 (Quantization classes for fixed line bundléet (M, g, b) be a quantizable
system with magnetic field, and L, a complex line bundle over M Hitty)(c1(L)) =
[—(1/27)b]. Then the set of equivalence classes of quantizatibna, V) of (M, g, b) for
fixed(L, h) is given byHY(M,R)/HY (M, Z).

Proof. The set of Hermitian connections is parametrized8yM) since two Hermitian
connections differ by an imaginary 1-formin. Because curw) = curv(V — in) =
curv(V) + dn we have ¢ = 0, son = dk, for a suitable bundle atlas ag € CO(M, R).
Two quantizationsL, i, V) and(L, h, V' = V +in) are equivalent if and only if there is
a Hermitian line bundle isomorphism with

i(a), —a0) = £, dfa
(see (8)). Thereforea = a’ — a = —idlogf. On the other hand, using the Bockstein
homomorphisny = 8 o (log/2xi-) : HO(M, $t,,) — HY(M, Z) one has

g =gf=go8f=1- jlfD) e H M, D),
and suchf exist if and only ify is integral. So the sequence

0— HYXM,Z) > HYM,R) —» QL9954 1)/ ~— 0

is exact; here two closed 1-formyg, 2 are equivalent (") if the connectionsv — in
andV — iny are equivalent. O

Definition 3 (Jacobi torus).J (M) := HY(M,R)/HY(M, Z) is called thelacobi torusof
M. The metric onM induces a metric o#/1(M, R) and HY(M, Z) via
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n, w) = / N A *o.
M
J (M) carries the quotient topology.

Definition 4 (Flat line bundle). A line bundle is calléitht if there is a bundle atlas with
locally constant transition functions.

Lemma 1 (Classes of flat line bundles)Yhe group (w.r.t. tensor product) of classes of flat
line bundles on a manifold M is isomorphic to the gradp(M, S1).

Proof. Flatline bundles are justlocally constantline bundles. Thus aline bundle cocycleis a
Cech 1-cocycle with values in the locally constaMtvalued functionsCech coboundaries

are exactly the isomorphisms of flat line bundles so that the set of classes of flat line bundles
corresponds to the set of classe€eth 1-cocycles. Finally, the cocycle of a tensor product

is given by the product of the cycles of the factors. O

Theorem 4 (Quantization classes}or a Riemannian manifoldM, g) with quantizable
magnetic field b the set of equivalence classes of quantizationis V) corresponds to
H(M, s1).

Proof. For a given choicé€L1, h1, V1) of a quantization every quantizati@o, sz, V2)
is — modulo equivalence — given by

(L2, h2,V2) =~ (L1 ® L12, h1 ® h12, V1 ® idp,, + idr, ® V12) with L1
=L} ® Lo, h12=h1® h2, V12 = V1= Q idy, + idp: ® Va.

Therefore the characterization of flat line bundle following Lemma 1 gives the set of quan-
tization classes. O

3. Connections

First we will identify the Jacobi torus with the connected component of the unit in the
group of one-dimensional unitary representations of the fundamental gradp of

Lemma 2 (Jacobi torus).

HYM,R)/HY M, Z) = (M) (10)

o
Proof. For every manifoldV, H := H1(M, Z) is the abelization of* := 71(M) so that
H =T. As in [13] we define the mapping
QLASeY N 5 Wi x» € H,  Xo(y) i= exp(Zni/ a)) , (11)
c(y)

for a closed patla(y) representing the class The integral does not depend on the choice
of path sincew is closed. On exact forms, the integral over closed paths vanishes so that we
obtain a well-defined mapping

HYM,R) 5 [0] ~ xo € H. (12)
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It is a homomorphism of groups becaugg(y) xw' (¥) = xwiw (¥). The kernel consists

of the (classes of) closed 1-formsfor which | w is integral for all closed paths i.e. just
(classes of) integral 1-forms. (11) is continuous for evend thus defines a continuous
mapping intad . SinceH (M, R) is connected the range of (12) is connected, and it contains
the trivial character as image of the zero class. O

Lemma 3 (Torsion torus).The isomorphism
7 (M) ~ HY(M., 5% (13)
can be realized geometrically by association of flat line bundles:

Xl—)F:MxX(C. (14)

Proof. Equality follows from the universal coefficient theorem (see e.qg. [4], Chapter 15)
H'(M, $*) = Hom(H1(M, Z), S*) ® Ext(Ho(M, Z), S%),

sinceHo(M, Z) is free (+ Ext(Ho(M, Z), S1) trivial) andr1 (M) has the same one-dimen-
sional representations as its abelizatibi(M, Z).

By Lemma 1HY(M, S1) is the set of classes of flat line bundles with respect to “flat
equivalence”. On the other hand, flat vector bundles are just the vector bundles which
are associated to a representation of the fundamental group. Therefore, flat line bundles
correspond to bundles associated to one-dimensional representations of the fundamental

group:
HY(M, SY) = (M x, Cly € m(M)}/ ~ .

onM x , C the natural flat connection is given by restriction of the canonical connection
d of the trivial bundleM x C.

On the other hand, given a flat line bundle one gets back the chajaeeholonomy
of the connections around closed paths: for a flat connection on a complex line Bundle
parallel transport around a closed path depends only on the homotopy class of the path
and therefore defines a unitary representatiaf 71(M). Thus parallel transport gives a
line bundle isomorphisnL. ~ M x pC. Since connection forms are invariant under flat
equivalence the holonomy gives a well-defined mapping &M, S2) into 71(M) which
obviously is inverse to the mapping “associatingo. O

Remark 10 (Torsion torus).By Lemma 2 the Jacobi torus is j@)o' Decompos-
ing T into free (finitely generated) and (finite) torsion parts one sees that characters in
(nl(M))O are just the ones vanishing on the torsion part. The subsequence

H(exp2ri-)
—

1,:
0— H M. 2)" S Hi (M. R) HYM, sY)

of the exact sequence (6) shows that the Jacobi torus is embed#€d i, S1) and does
not contain torsion elements. Therefdi (M, S1) is the “torsive version” of the Jacobi
torus, hence its name
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4. Bloch theory on vector bundles

In this section we recall the basic elements of Bloch theory for periodic operators in the
geometric context of vector bundles. In the final section we will use it in the case of possibly
non-trivial complex line bundles. The standard reference for the theory of direct integrals
is [7], for Bloch theory in Euclidean space see [19].

Our general assumptions ark:is an oriented smooth Riemannian manifold without
boundaryI" a discrete abelian group acting &rfreely, isometrically, and properly discon-
tinuously. Furthermore, we assume the action to be cocompact in the sense that the quotient
M = X/T is compact.

Next, letE be a smooth Hermitian vector bundle ovéer

Definition 5 (Periodic operator). Assume there is an isometric)ifiof the action ofy
fom X to E in the following sense:

Y« Ex = E,, for x e X,y eT. (15)
This defines an actiofi, on the sections: Fore C2°(E) we define

(Tys)(x) := yus(y "2x) for x e X,y e T. (16)
(Ty)yer induces a unitary representation ofin L?(E) sincey, acts isometrically and

T* = (T,,)" L.
y Y
A differential operatotD onD(D) := CS°(E) is called periodic if, orD(D), we have

Vy e :[T,,D] =0. (7)

Lemma 4 (Associated bundle)E is the liftz* E’ of a Hermitian vector bundI€’ over M by
the projectionz : X — M. E and X areI'-principal fiber bundles overk’
resp. M

To evenyl-principal fiber bundle and every charactgre I" we associate a line bundle.
This gives the relations depicted in the following diagi@m” denotes association of line
bundle$:

cwN cN cwN c¥
! ! ! !
I < E i o ~ C < E, — E
Ik s J |

r & X - M ~ C < F, —- M
g

principal fiber bundles and associated line bundles

In this situation we havé&, ~ E’' ® F,.

Proof. E is aT-principal fiber bundle, so we can use the liftEeaction to definet’ ;=
E/T. Since this action is a lift of th€-action onX, E’ has a natural structure of a vector
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bundle overM. If £ : E/ — M is the bundle projection af’, then the pull back byt is
defined as

T*E = X x5z E' = {(x,e) € X x E'ln(x) = 7F (e)}.

If 7€ : E — X is the bundle projection d& andr, : E — E’is the quotient map, then
we get a bundle isomorphisi — 7*E’ by

Eser> (nf(e), mi(e)) € T*E’.

Therefore, in this representation the liff of y acts on(x,e) € 7*E’ asy,(x,e) =
(yx,e).

Sections into an associated bundlex<, V are just those sections of the bundiex V
which have the appropriate transformation property. By construckigris a complex line
bundle overE’, but fromE it inherits the vector bundle structure, so its sections fulfill:

C®(Ey) =~ C¥(E)"* = {s e C¥(E)Vy €T 1 y*s = x(y)s}. (18)
An analogous equation holds for the line bun#leoverM. Finally, (18) shows
Ey=Ex, C=@"E)x; C=Xxz E)x;, CxE' ®@ (X x, C)=E ® Fy.

Here, all equalities are immediate from the definitions, besides the last but one, which
may be seen as follows:

(X xz EYxy C=(X xz E' xC)/T
with the"-action

y(x, e 2) = (yx,e x(¥)2),
whereas

E®@XxyO=E®(Xx0/I)
with theI"-action

y(x,2) = (yx, x(¥)2).

So, both bundles are quotients of isomorphic bundles with respect to the same
I-action. O

Next we want to decompose the Hilbert spaé¢E) of square-integrable sections®into

a direct integral over the character spac©n[" we use the Haar measure. From the theory

of representations of locally compact groups we need the following character relations for
abelian discret&, i.e. for abelian, compadt (see e.g. [20], Section 1.5]:

Lemma 5 (Character relations)fFor y € T’

1, y=e,
dy = 19
/ﬁx(y) X {o, e (19)
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Forx,x el

D XA ) =80 — 1) (20)

yel

in distributional sense, i.e. fof < c()
> f XX W F0dx = F(xX).
yell r
We define for every charactgre [a mappingd, : C°(E) 5> s > 5, € C®(E) by
S =Y xyesy ). (21)
yell
Since

S D= xWrs Y =D x@Y TG Y ) ((V”ly)*lx)
yel yel

=x()yeSx (x)
we have
§y € C(E)" X = {r € C¥(E)Vyer Tyr = x(y)r}

which defines a sectiaf), € C*(E,).

Let D be a fundamental domain for tHe-action, i.e. an open subset ¥fsuch that
UyeFVD = X uptoasetof measure 0 ap® ND = @ for y #e.

Then

2 ~ 2
/ﬁ||sx||L2(EX)dx:/f/DISX(X)I d dy

= /D/F Z X()/1_17/2)(Vl*s()/]__l)C)Wz*s(yz_lx))E dy dx

v1,¥2€l

=fDZ|s<y—1x>|2dx = lIs 1% 2

yell

On one hand, this shows that we can define a measurable struct}?[;eqmz(EX) by
choosing a sequence @F°(E) which is total inL2(E). On the other hand, we can see
that the direct integraffEB LZ(EX) dy is isomorphic toL?(E) via the isometry®, whose
inverse is given by

P (SX)Xef‘ > /;Ex(x) dx,

as is easily seen from the character relations (19) and (20).
This shows
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Lemma 6 (Direct integral). The mapping defined by (21) can be extended continuously to
a unitary

(7]
®: L%(E) > fr L%(E,)dx. (22)

For the direct integral of Hilbert spacés = fﬁ@ H, dy the set of decomposable bounded
operatorsL‘X’(f, L(H)) is given by the commutant.® (f, C))’ in £(H). Since commu-
tants are weakly closed a@{I", C) is weakly dense il °°(I", C) one hagL>(I", C))’ =
(C(f", C)). Therefore, in order to determine the decomposable operators one has to deter-
mine the action of’ (") on L2(E). This is easily done using the explicit form &f

Proposition 1 (C(I")-action). f € C(I") acts ons € C2°(E) by

Mys = &* f s, (23)
and one has
(Mss)(x) =Y flr HTys(x), (24)
yel
where
fy) = /F FOOX () dx (25)

is the Fourier transform of fM  is a bounded operator with noryf || .

Proof. Forx € X one has

(796 = @ 10w = [[F09,0dx = [ £ Y x0mastr 0 d

yel

=Y O sy ).

yell
Sincef is a multiplication operator in each fiber it has fiberwise ndrfi o, and so havé
andM; = ®* f . O

Corollary 1 (Decomposable operatorsonjugation byd defines anisomorphism between
decomposable bounded operatorsfﬁil?]Lz(EX) dx andrI'-periodic bounded operators on
L%(E).

Proof. “=” A decomposable operator commutes with é&")-action, especially with
f, € C(I') which is defined by

1 ify =y,

0 else

fy()’/) = {

By (24) commuting withf, is equivalent to commuting with.
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“«<" To commute with thd™-action means to commute with &}, for y € I'. Because
of

OO =xWw)

the f, are just the charactefs of the compact group’, and by the Peter—Weyl theorem
(or simpler: by the Stone—Weierstra theorem) they are den@élin Since the operator
norm of M ; and the supremum norm béoincide the commutation relation follows for all
f e (") by continuity. O

An unbounded operator is decomposable if and only if its (bounded) resolvent is de-
composable. For a periodic symmetric elliptic operddarve have a domain of definition
D(D) = C(X) on whichD is essentially self-adjoint. This domain is invariant ias
well as for thel-action, and one had), y] = O for all y € I'". Thus all bounded functions
of D commute with thd™-action, and one has:

Theorem 5(Decomposition of periodic operatorsJhe closureD of every periodic sym-
metric elliptic operator D is decomposable with respect to the direct int(ﬁ?allz(EX) dy.
A core for the domain oD, is given byC>(E,), and the action oD, on C®(E,) =~
C>(E)"x is justthe action of D as differential operator 61i°(E)!*. We haveD, = D,
whereD, = D|cegr.x, and the closures are to be taken as operatorS%(nEX).

Proof. Given the remark above we have shown the decomposability already.

C>(X) is a core forD, its image underd, is contained inC>®(E)'"x and is a core
for [)X, since® is an isometry. On this domain (21) gives the actioquf as asserted in
the theorem. Sinc®, is a symmetric elliptic operator on the compact manifivdt is
essentially self—adjoint[)x is a fiber of D (which is self-adjoint by, e.qg., [2]) and therefore
self-adjoint, thus both define the same unique self-adjoint exteZjoof D, . O

5. Periodic magnetic fields

From now on we assume the existence of a free isometric properly discontinuous action
of a discrete group on the Riemannian manifoll We assume the action to be cocompact
in the sense that the quotient manifatt::= I"\ X is compact. Furthermore, léte Q2(X)
be a quantizable periodic magnetic field so that

1
db =0, [—b] e H*(i) (Hz(X, Z)) C H3(X,R),
2
b=n*by for a by € Q*(M),
where

7. X—>M



M.J. Gruber/Journal of Geometry and Physics 34 (2000) 137-154 151

is the projection. The main point is that integrality @/ 27 )by, is not automatic: For a
two-dimensional manifol&X integrality of (1/27)b,; means integrality of the magnetic flux
[3,bu through one elementary lattice cell, wheréb&2r)b is integral automatically if e.g.
H?%(X,7Z) =0.

Theorem 6 (Periodic magnetic Schrédinger operatoif)(1/27)b, is integral then there
exists a quantizatioiL, #, V) on X such that the corresponding magnetic Schrédinger
operator H%+V is I'-periodic.

Proof. If (1/27)by, is integral there is a Hermitian line bundlé overM with connection
V’ by Theorem 1, so that cu¢vV’) = by,. L’ andV’ can be pulled back via from M to X,
giving a line bundle. = 7*L’ overX with connectiorV and curvaturé.

TheT -action onX induces & -action onL: Leta, : X — X be the action of € T on
X. Thenr o ), = m, and therefore

ayL = a;n*L’ =n*L'=L.

Thus,L = {(x,1) € X x L'|l € L'y} carries a natural-action by acting on the first
component, using the action oh

SinceV is lifted by 7 it is automaticallyl"-periodic: because of the proper discontinuity
of theI"-action every finite covering d¥l by open sets induces a locally finite covering of
X by I'-invariant open sets, and the connection formdafan be pulled back to periodic
forms onX. O

Usually one adds a smooth, periodic functiiithe “electric potential”) to get the full
Schradinger operator. The resulting operator is periodic and elliptic, therefore we can apply
appropriate analytic methods. Especialty>-" is essentially self-adjoint. If is abelian
we have the Bloch decomposition:

Theorem 7 (Direct integral). For abelianI" the fibers off £-V are given by

(m)x = HEY with (26)

D (HXL*V) = C®(L,) = C®(L)"*, (27)

Ly =L ®F,, (28)

HY = HYY ooy, (29)

HYV = H"Vx, (30)
where

Vy = (V' ®id +id @ d)|coo(yrx.- (31)

In other words: every fiber of the magnetic Schrédinger operatérY is a magnetic
Schrodinger operator of typs Lx-Vx.
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Proof. By Theorem 5,H-V is decomposable, and Egs. (26)—(29) follow immediately.
Eqg. (30) follows fory = 1 from Leibniz’s rule for connections sindg, = M x C in this

case. For alk, (31) defines, as we have seen in the proof of Lemma 3, a connection for the
guantization class characterized pyfollowing Theorem 4. Moreover, the explicit form
shows that

Vlgooyrx = Vy
sinceV, does not depend on explicitly. Therefore
HL'V|CO<>(L)F,X = HLoVx,
and the proof is completed by (29). O

Corollary 2 (Bloch theory and quantization).et (M, g, b) be a quantizable system with
magnetic field over a compact manifald. Then the corresponding syste#t, 3, b) is

(up to equivalence) uniquely quantizable on the universal covering space. Moreover, if
I := 71(M) is abelian then the magnetic Schrodinger operaidrY on L2(M) is decom-
posable ovel, and the fibers occurring are just the equivalence classes of quantizations
of (M, g, b):

— o —
HLY = /AHLNX dx (32)
T1(M)

“unigue quantization above-“sum over all quantizations downstdirs

Proof. The system(M, g, b) is periodic and quantizable by construction. Since obviously
HY(M, $1) = {1} the quantization is unique up to equivalence. For abdliare can apply
Theorem 7 from which, together with Theorem 4, we get the conclusion. O

Remark 11 (Non-abelian fundamental grouplEven if 71(M) is non-abelian one may
choose ahomology covering spacef M such thatthe covering group is abeliéf; (M, 7))
andrm1(X) is finite(the torsion part. Now there is a finite number of classes of quantizations
on X, the set of classes of quantizations &hhas a finite number of components. Bloch
analyzing a quantization o (with respect to the abelian groufi1(M, Z)) now gives

all quantizations onM belonging to one componentﬁf(ﬁ), generalizing the previous
corollary. Note that this does not yet allow to decompose the periodic operata¥svaith
respect to the full non-abelian grouﬁﬁ).

Remark 12 (Non-commutative Bloch theory)Given the previous remark it is natural to

try to decompose the periodic operators with respect to a non-abelian group. This may
be a group of translations or a variation thereof of the so-called magnetic translations. In
any case there is no good character grob@ny more which would allow for the Fourier
transform which one uses in the abelian case: the set of irreducible representations lacks
the group structure, the set of one-dimensional representations is too small to describe
the whole group(or the group including the magnetic gayg®ut the spaceC(I") of
continuous functions off continues to exist in the non-abelian case in the form of the
reduced groupC*-algebra ofI". This may be viewed as a non-commutative topological
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space or— after recognizing additional natural structures on-t as a non-commutative
Riemannian manifold in the sense[6}.

Depending on the different aims (index and K-theory, transport properties and quantum
Hall effect, spectral theory) and assumptions (free group actions, transitive projective ac-
tions, free projective actions) this observation has been used in different manners. The last
mentioned case relates most to the subject of this paper, and we refer — slightly biased —
to [9,10] and the references therein.
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