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Abstract

Quantizing the motion of particles on a Riemannian manifold in the presence of a magnetic
field poses the problems of existence and uniqueness of quantizations. Both of them are considered
since the early days of geometric quantization but there is still some structural insight to gain
from spectral theory. Following the work of Asch et al. (Magnetic Bloch analysis and Bochner
Laplacians, J. Geom. Phys. 13 (3) (1994) 275–288) for the 2-torus we describe the relation between
quantization on the manifold and Bloch theory on its covering space for more general compact
manifolds. © 2000 Elsevier Science B.V. All rights reserved.
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1. Introduction

In geometric quantization for symplectic manifolds one is faced with questions of exis-
tence and uniqueness (see e.g. [23,25] which do not arise for the common phase spaceT ∗M
(with standard symplectic structure) of Hamiltonian mechanics. But, when incorporating
magnetic fields (closed 2-formsb ∈ �2(M)) into the picture one is forced either to choose
magnetic potentials (a ∈ �1(M) with da = b) or to “charge” the standard symplectic struc-
ture by the magnetic field (see Remark 1 below). In either case, the questions of existence
and uniqueness come up now even for the phase spaceT ∗M. Indeed, these questions arise
for prequantizations, whereas — given a prequantization — there is a canonical choice of
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a quantization when the phase space isT ∗M with a charged symplectic structure (at least
for Hamiltonians linear in the momenta; see Remark 2).

On the other hand, the cohomological obstructions and degrees of freedom for geometric
quantization vanish on the covering spaceX := M̃. Since the classical Hamiltonian system
may be lifted fromM to X one may try to quantize onX and push the quantization down
to M again. This push down is possible if and only if the system onM is quantizable.
But quantization onX is unique, so one may ask which quantizations onM one gets by
this procedure, and how to recover the other quantizations onM from that onX. Since
the magnetic Schrödinger operatorH arising from a quantization onX is periodic (any
operator arising from a periodic classical symbol is) one can, in the case of abelian covering
group, analyze it using Bloch theory. This gives a decompostion ofH into a direct integral
of operators (the “fibers” ofH ) acting on line bundles overM. It turns out that the fibers are
unitarily equivalent to magnetic Schrödinger operators arising from quantizations onM,
and that the direct integral runs just over all classes of quantizations onM, using a natural
integration measure. This follows the ideas of [1] who did the same work for the 2-torus.

1.1. Outline

In Section 2, we recall the definitions (quantization of a system with magnetic field,
equivalence of quantizations) and the appropriate cohomology groups. All of that is known
from the standard literature on geometric quantization, so we will not give references to the
results individually.

In Section 3, we describe the connections between sets of equivalence classes of quan-
tizations, as determined in the previous section, and representations of the fundamental
group.

In Section 4, we recall Bloch theory in the geometric context of periodic operators acting
on sections of vector bundles.

In Section 5, we analyze the Bloch decomposition for Schrödinger operators with mag-
netic fields, identify the fibers of this decomposition (Theorem 7) and draw our final con-
clusions about the relation to quantization (Corollary 2).

2. Equivalence classes of quantizations

Remark 1 (Minimal coupling). Lorentz force is described in Newton’s equations of clas-
sical mechanics using a magnetic fieldb ∈ C∞(TR3) ' �2(R3) (“axial vector field”).
When trying to incorporate it into the formalism of Lagrange or Hamilton mechanics,
one is faced with the necessity(or, at least, utility) of introducing a vector potentiala ∈
C∞(TR3) ' �1(R3) (“polar vector field”) such thatb = da (b is divergence free,
i.e. closed; sinceH 2

dR(R3) = 0, b is exact). A Hamiltonianh ∈ C∞(TR3) is replaced
by ha : (x, p) 7→ h(x, p − qa(x)) (electric chargeq), the so-called minimally coupled
Hamiltonian. Doing this for a free particle(h(x, p) = (1/2m)|p|2, massm) one gets
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ha(x, p) = (1/2m)|p − qa(x)|2 which suggests usingHa = (1/2m) ((~/i)∇ − a)2 as the
Hamiltonian in quantum mechanics, where∇ denotes gradient inR3. ∇ − (i/~)a may be
viewed as connection on the trivial complex line bundleR3 × C. Note especially that the
curvature is given bycurv(∇ − (i/~)a) = (1/~)da = (1/~)b if we identify the Lie algebra
of U(1) withR in a suitable manner(−iv 7→ v ∈ R).

In the case of non-exact magnetic fields (on a manifoldM with non-trivialH 2
dR(M)) one

can, in general, only find local vector potentials and local connections on locally trivial
complex line bundles. If everything fits together “nicely” one gets a global connection on
a (global) complex line bundle with curvature(1/~)b. This motivates Definition1.

Another aspect of Definition1 is given by the point of view of geometric quantization.
It rests on the observation that Hamiltonian mechanics with a (closed) magnetic fieldb ∈
�2(M) can be formulated without any magnetic vector potential if one uses a “charged”
symplectic formωb = ω + b̃ onN := T ∗M, whereω is the canonical symplectic form on
T ∗M andb̃ the pull-backπ∗b ofb fromM toT ∗M by the projectionπ : T ∗M → M onto the
base points. A prequantization of such a system is given by a Hermitian line bundleL̃ over
T ∗M with connection (covariant derivative)̃∇ such that~ curv(∇̃) = ωb. A quantization
is a prequantization together with a complex polarizationP of N . A complex polarization
of N = T ∗M is a complex distribution (i.e. a family(Px)x∈N of complex subspaces of
the complexified tangent space TNC, locally defined by smooth frames) with the following
properties:
1. EveryPx is Lagrangian with respect to the complexified symplectic structure.
2. dimP ∩ P̄ ∩ TN is constant onN .
3. P is integrable, i.e. closed with respect to Lie brackets.

Since our symplectic manifold is a cotangent space with (vertically) charged symplectic form
there is a canonical polarization given by the fibration overM with fiber(TxM)C, x ∈ M,
the vertical polarization. To be definite: the corresponding distribution isVP = (kerT π)C.
Polarized sections iñL with respect to this polarization can be viewed as sections into
a complex line bundleL over M with π∗L = L̃. SuchL exist because the fibers ofπ :
T ∗M → M are contractible;L can be constructed as pull-back by the0-section inT ∗M.
Finally, ∇̃ induces a connection∇ onL with curvatureb.

Remark 2 (Geometric quantization and Bochner Laplacians).In general, geometric quan-
tization provides for means to quantize classical observables whose associated Hamiltonian
flow preserves the chosen polarization. In the case of a cotangent spaceT ∗M with the ver-
tical polarization mentioned above, this restricts quantization to Hamiltonians linear in the
momenta in general. There are several methods to overcome this.

Either one searches for polarizations which are invariant under the given flow. This has
been considered especially for the geodesic flow on spheres[12] and the Kepler problem
[18,21].

Or one uses the Blattner–Kostant–Sternberg pairing for polarizations[3,8,11,14,22].
Here one may produce non-symmetric operators in general.

A third approach — leaving the setting of geometric quantization — consists of mimicking
the Euclidean Weyl quantization (or other orderings), using normal coordinates[15–17,24].
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The results depend on the choice of ordering (Weyl, normal, antinormal), wave functions
(functions or half-densities) and even ones Euclidean point of view (dilations may introduce
curvature terms).

In any case, the free particle Hamiltonian given by a Riemannian metric is quantized to
1+αR, where we choose the convention1 ≥ 0,R denotes scalar curvature,α is rational
and non-negative. Even path integral methods and Maslov quantization lead to the same
type of operator. In physics, the Laplacian is accepted as the quantization of the free particle
as well as the Bochner–Laplacian is for the particle in a magnetic field.

Since we intend to include a smooth potential V in the Schrödinger operator anyway,
one may cover any scalar curvature terms arising from some choice of quantization. To
be more specific: in Section5, we deal with periodic potentials and magnetic fields. Since
we demand the metric to be periodic also, any curvature term will be so and will simply
descend to the quotient. Therefore, Theorem7 and Corollary 2 hold for any consistent
choice of quantization (i.e. choosingα the same on covering and quotient), not only for the
choiceα = 0 made in Definition1.

In the sequel we choose units with~ = 1, q = 1, 2m = 1.

Definition 1 (Quantization with magnetic field). Let(M, g) be an orientable Riemannian
manifold,b ∈ �2(M) a closed real-valued 2-form (themagnetic field). A quantizationof the
particle motion on(M, g) in the presence of the magnetic fieldb is given by a Hermitian line
bundle(L, h, ∇) overM with connection such that curv(∇) = b. Themagnetic Schrödinger
operatoris defined by theBochner–Laplacian

HL,∇ := ∇†∇ with domain D(HL,∇) = C∞
0 (L) (1)

in the Hilbert spaceL2(L) of square-integrable sections ofL, defined byg andh. Here,∇†

is the formal adjoint of∇.

Remark 3 (Self-adjointness).SinceHL,∇ is symmetric and bounded below (by0) there is a
canonical self-adjoint extension given by the Friedrichs extensionH

L,∇
F . It is the self-adjoint

operator associated to the closure of the symmetric form

q(f, g) := (f, HL,∇g) = (∇f, ∇, g)

with (form) domainQ(q) = D(HL,∇).

Remark 4 (Equivalence classes of line bundles).Denote byGM the sheaf of germs of
smoothG-valued functions onM for any abelian Lie groupG. Every complex line bundle L
over M is defined by ǎCech cocycle(cαβ) ∈ Ž1(M,C×

M). Given any(lαβ) ∈ Č1(M,CM)

with exp 2π ilαβ = cαβ one hasδl ∈ Ž2(M,ZM) = Ž2(M,Z). Here δ denotesČech
codifferential. Other choicesl′ fulfill l′ − l ∈ Č1(M,Z), so thatδl andδl′ define the same
class inȞ 2(M,Z) , and the mapping

j : H 1(M,C×
M) → H 2(M,Z), c 7→ δl

is well-defined.
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Every line bundle isomorphism from c toc′ corresponds to aČech cochain(fα) ∈
Č0(M,C×

M), c′ = cδf .
H 2(M,Z) parametrizes the set of equivalence classes of complex line bundles: the short

exact sequence of sheaves

0 → Z→ CM

exp 2π i·→ C×
M → 0, (2)

where

exp 2π i· : C 3 z 7→ exp(2π iz) ∈ C×,

induces the following long exact sequence inČech cohomology:

0 → H 0(M,ZM) → H 0(M,CM) → H 0(M,C×
M) →

→ H 1(M,ZM) → H 1(M,CM) → H 1(M,C×
M)→j

‖ ‖
H 1(M,Z) 0

→jH 2(M,ZM) → H 2(M,CM) → . . .

‖ ‖
H 2(M,Z) 0

(3)

SoHi(M,C×
M)

j'Hi+1(M,Z) for everyi ≥ 1 , and the joining homomorphism j is just
the mapping described before. The class inH 2(M,Z) characterizing L is called the first
Chern classc1(L) of L.

Every Hermitian line bundle(L, h) is defined by a(cαβ) ∈ Ž1(M, S1
M) every Hermitian

line bundle isomorphism (i.e. every isometry) by some(fα) ∈ Č0(M, S1
M) , c′ = c δf .

Using the short exact sequence

0 → Z→ RM

exp 2π i·→ S1
M → 0 (4)

and the corresponding long exact sequence inČech cohomology one gets againHi(M, S1
M)

j'Hi+1(M,Z) for i ≥ 1, and j comes from the mappingδ ◦ (log · /2π i) on cochains as
before.

Finally we recall that the group structure induced onH 1(M,C×
M) andH 1(M, S1

M)

by the coefficient groups is just the tensor product of line bundles.

Remark 5 (Integral de Rham class).The short exact sequence of groups

0 → Z
i→Rexp 2π i·→ S1 → 0, (5)

induces the long exact sequence of cohomology groups
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0 → H 0(M,Z)
H0(i)→ H 0(M,R) → H 0(M, S1) →

↘
0

→ H 1(M,Z)
H1(i)→ H 1(M,R) → H 1(M, S1) →

↗
0

i→ H 2(M,Z)
H2(i)→ H 2(M,R) → . . .

(6)

A de Rham class is called integral if it is contained in the range ofH ∗(i).

Remark 6 (Curvature and Chern class).For every line bundle with connection one has
H ∗(i)(c1(L)) = [−(1/2π)curv(∇)] , using the identification−iR ' R as in the in-
troduction. This can be seen for example using Deligne cohomology with coefficients in
R(2) := (2πi)2R ([5], Chapter1 for these notions): Letµ = δ (logc/2π i) ∈ Ž2(M,Z)

as in Remark 4 representc1(L) for some choice of logarithmslogαβ . This defines a

cocycle inŽ2(M,R(2)∞D ) given by(−(2π i)2µ, −2π ilogc, −2πa) , and from a propo-
sition on Deligne cohomology groupsHp(M,R(p)∞D ) (ibidem, Lemma1.5.4) one gets
−(2π i)2H ∗(i)([µ]) = −2π [da] ∈ H 2(M,R) using theČech–de Rham isomorphism.

This connection between curvature and Chern class immediately implies

Theorem 1 (Existence of quantizations).A system with magnetic field(M, g, b) is quan-
tizable if and only if the de Rham class of(1/2π)b is integral.

Definition 2 (Equivalence of quantizations). Two quantizations given by(L, h, ∇) and
(L′, h′, ∇′) are calledequivalentif there is a Hermitian line bundle isomorphism8 : L →
L′ intertwining the connections:

∀s ∈ C∞(L) : ∀X ∈ C∞(TM) : 8 ◦ ∇Xs = ∇′
X(8 ◦ s). (7)

Remark 7 (Unitary equivalence).If (L, h, ∇) and(L′, h′, ∇′) are two quantizations equiv-
alent via8, then

U8 : L2(L) → L2(L′),

s 7→ U8s := 8 ◦ s,

defines a unitary operator intertwining the magnetic Schrödinger operators:

U8HL,∇ = HL′,∇′
U8.

Conversely, ifU8 is unitary then8 is a Hermitian isomorphism. Eq. (7) is just the
intertwining property for first order operators defined as quantizations of vector fields.

Remark 8 (Local form of the gauge).We choose a cochainf ∈ Č0(M, S1
M) representing

the isomorphism8, i.e. ϕ′
α ◦ 8 ◦ ϕ−1

α = idM × fα , and cocycles(c, a) and (c′, a′)
for (L, h, ∇) and (L′, h′, ∇′) with respect to bundle chartsϕα : L|Uα → Uα × C and
ϕ′

α : L′|Uα → Uα × C. Then one easily calculates

i(a′
α − aα) = f −1

α dfα = d logfα. (8)
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Remark 9 (2-term complex).The “second half” of the condition for the Deligne cocycle
in Remark 6, i.e.−i(δa)αβ = −d logcαβ , can be viewed as cochain condition in the 2-term
complex of sheaves

K :=




K0 := S1
M

↓ id log·
K1 := �1

M

(9)

Here�1
M denotes the sheaf of(real-valued) 1-forms onM.

(c, −a) defines a cocycle, hence it defines a class in the hypercohomologyH 1(M, K)

of K ; in ([5], Chapter2) it is shown that this class does not depend on the choice of line
bundle isomorphismcαβ and connection formsaα ; moreover, it parametrizes isomorphism
classes of line bundles with connection:

Theorem 2(Quantization classes).The set of Hermitian isomorphism classes of Hermitian
line bundles with connection on a Riemannian manifold M is given by the hypercohomology
groupH 1(M, K) of the complex of sheaves K(see(9)).

Since we are interested in quantizations for a given magnetic field, we will elaborate on
isomorphism classes for fixedL andb:

Theorem 3 (Quantization classes for fixed line bundle).Let (M, g, b) be a quantizable
system with magnetic field, and L, a complex line bundle over M withH ∗(i)(c1(L)) =
[−(1/2π)b]. Then the set of equivalence classes of quantizations(L, h, ∇) of (M, g, b) for
fixed(L, h) is given byH 1(M,R)/H 1(M,Z).

Proof. The set of Hermitian connections is parametrized by�1(M) since two Hermitian
connections differ by an imaginary 1-form−iη. Because curv(∇) = curv(∇ − iη) =
curv(∇) + dη we have dη = 0, soη = dkα for a suitable bundle atlas andkα ∈ Č0(M,R).
Two quantizations(L, h, ∇) and(L, h, ∇′ = ∇ + iη) are equivalent if and only if there is
a Hermitian line bundle isomorphism with

i(a′
α − aα) = f −1

α dfα

(see (8)). Thereforeη = a′ − a = −id logf . On the other hand, using the Bockstein
homomorphismj = δ ◦ (log/2π i·) : H 0(M, S1

M) → H 1(M,Z) one has

g′ = gδf = g ⇔ δf = 1 → j ([f ]) ∈ H 1(M,Z),

and suchf exist if and only ifη is integral. So the sequence

0 → H 1(M,Z) → H 1(M,R) → �1,closed(M)/ ∼→ 0

is exact; here two closed 1-formsη1, η2 are equivalent (“∼”) if the connections∇ − iη1

and∇ − iη2 are equivalent. �

Definition 3 (Jacobi torus).J (M) := H 1(M,R)/H 1(M,Z) is called theJacobi torusof
M. The metric onM induces a metric onH 1(M,R) andH 1(M,Z) via
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(η, ω) :=
∫

M

η ∧ ∗ω.

J (M) carries the quotient topology.

Definition 4 (Flat line bundle). A line bundle is calledflat if there is a bundle atlas with
locally constant transition functions.

Lemma 1 (Classes of flat line bundles).The group (w.r.t. tensor product) of classes of flat
line bundles on a manifold M is isomorphic to the groupH 1(M, S1).

Proof. Flat line bundles are just locally constant line bundles. Thus a line bundle cocycle is a
Čech 1-cocycle with values in the locally constantS1-valued functions.̌Cech coboundaries
are exactly the isomorphisms of flat line bundles so that the set of classes of flat line bundles
corresponds to the set of classes ofČech 1-cocycles. Finally, the cocycle of a tensor product
is given by the product of the cycles of the factors. �

Theorem 4 (Quantization classes).For a Riemannian manifold(M, g) with quantizable
magnetic field b the set of equivalence classes of quantizations(L, h, ∇) corresponds to
H 1(M, S1).

Proof. For a given choice(L1, h1, ∇1) of a quantization every quantization(L2, h2, ∇2)

is — modulo equivalence — given by

(L2, h2, ∇2) ' (L1 ⊗ L12, h1 ⊗ h12, ∇1 ⊗ idL12 + idL1 ⊗ ∇12) with L12

= L∗
1 ⊗ L2, h12 = h1 ⊗ h2, ∇12 = ∇1∗ ⊗ idL2 + idL∗

1
⊗ ∇2.

Therefore the characterization of flat line bundle following Lemma 1 gives the set of quan-
tization classes. �

3. Connections

First we will identify the Jacobi torus with the connected component of the unit in the
group of one-dimensional unitary representations of the fundamental group ofM:

Lemma 2 (Jacobi torus).

H 1(M,R)/H 1(M,Z) '
(
π̂1(M)

)
0
. (10)

Proof. For every manifoldM, H := H1(M,Z) is the abelization of0 := π1(M) so that
Ĥ = 0̂. As in [13] we define the mapping

�1,closed(M) 3 ω 7→ χω ∈ Ĥ , χω(γ ) := exp

(
2π i

∫
c(γ )

ω

)
, (11)

for a closed pathc(γ ) representing the classγ . The integral does not depend on the choice
of path sinceω is closed. On exact forms, the integral over closed paths vanishes so that we
obtain a well-defined mapping

H 1(M,R) 3 [ω] 7→ χω ∈ Ĥ . (12)
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It is a homomorphism of groups becauseχω(γ )χω′(γ ) = χω+ω′(γ ). The kernel consists
of the (classes of) closed 1-formsω for which

∫
c
ω is integral for all closed pathsc, i.e. just

(classes of) integral 1-forms. (11) is continuous for everyγ and thus defines a continuous
mapping intoĤ . SinceH 1(M,R) is connected the range of (12) is connected, and it contains
the trivial character as image of the zero class. �

Lemma 3 (Torsion torus).The isomorphism

π̂1(M) ' H 1(M, S1) (13)

can be realized geometrically by association of flat line bundles:

χ 7→ Fχ = M̃ ×χ C. (14)

Proof. Equality follows from the universal coefficient theorem (see e.g. [4], Chapter 15)

H 1(M, S1) = Hom(H1(M,Z), S1) ⊕ Ext(H0(M,Z), S1),

sinceH0(M,Z) is free (→ Ext(H0(M,Z), S1) trivial) andπ1(M) has the same one-dimen-
sional representations as its abelizationH1(M,Z).

By Lemma 1H 1(M, S1) is the set of classes of flat line bundles with respect to “flat
equivalence”. On the other hand, flat vector bundles are just the vector bundles which
are associated to a representation of the fundamental group. Therefore, flat line bundles
correspond to bundles associated to one-dimensional representations of the fundamental
group:

H 1(M, S1) ' {M̃ ×χ C|χ ∈ π̂1(M)}/ ∼ .

On M̃ ×χ C the natural flat connection is given by restriction of the canonical connection
d of the trivial bundleM̃ × C.

On the other hand, given a flat line bundle one gets back the characterχ as holonomy
of the connections around closed paths: for a flat connection on a complex line bundleL

parallel transport around a closed path depends only on the homotopy class of the path
and therefore defines a unitary representationρ of π1(M). Thus parallel transport gives a
line bundle isomorphismL ' M̃ × ρC. Since connection forms are invariant under flat
equivalence the holonomy gives a well-defined mapping ofH 1(M, S1) into π̂1(M) which
obviously is inverse to the mapping “associating toM̃”. �

Remark 10 (Torsion torus).By Lemma 2 the Jacobi torus is just
(
π̂1(M)

)
0
. Decompos-

ing 0 into free (finitely generated) and (finite) torsion parts one sees that characters in(
π̂1(M)

)
0

are just the ones vanishing on the torsion part. The subsequence

0 → H 1(M,Z)
H1(i)→ H 1(M,R)

H1(exp2π i·)→ H 1(M, S1)

of the exact sequence (6) shows that the Jacobi torus is embedded inH 1(M, S1) and does
not contain torsion elements. ThereforeH 1(M, S1) is the “torsive version” of the Jacobi
torus, hence its name.
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4. Bloch theory on vector bundles

In this section we recall the basic elements of Bloch theory for periodic operators in the
geometric context of vector bundles. In the final section we will use it in the case of possibly
non-trivial complex line bundles. The standard reference for the theory of direct integrals
is [7], for Bloch theory in Euclidean space see [19].

Our general assumptions are:X is an oriented smooth Riemannian manifold without
boundary,0 a discrete abelian group acting onX freely, isometrically, and properly discon-
tinuously. Furthermore, we assume the action to be cocompact in the sense that the quotient
M := X/0 is compact.

Next, letE be a smooth Hermitian vector bundle overX.

Definition 5 (Periodic operator). Assume there is an isometric liftγ∗ of the action ofγ
fom X to E in the following sense:

γ∗ : Ex → Eγx for x ∈ X, γ ∈ 0. (15)

This defines an actionTγ on the sections: Fors ∈ C∞
c (E) we define

(Tγ s)(x) := γ∗s(γ −1x) for x ∈ X, γ ∈ 0. (16)

(Tγ )γ∈0 induces a unitary representation of0 in L2(E) sinceγ∗ acts isometrically and
T ∗

γ = (Tγ )−1.
A differential operatorD onD(D) := C∞

c (E) is called periodic if, onD(D), we have

∀γ ∈ 0 : [Tγ , D] = 0. (17)

Lemma 4(Associated bundle).E is the liftπ∗E′ of a Hermitian vector bundleE′ over M by
the projection π : X → M. E and X are 0-principal fiber bundles overE′

resp. M.
To every0-principal fiber bundle and every characterχ ∈ 0̂ we associate a line bundle.

This gives the relations depicted in the following diagram(“ ” denotes association of line
bundles):

CN CN CN CN

↓ ↓ ↓ ↓
0 ↪→ E

π∗→ E′  C ↪→ Eχ → E′

↓ πE ↓ πE′ ↓ ↓
0 ↪→ X →

π
M  C ↪→ Fχ → M

principal fiber bundles and associated line bundles

In this situation we haveEχ ' E′ ⊗ Fχ .

Proof. E is a0-principal fiber bundle, so we can use the lifted0-action to defineE′ :=
E/0. Since this action is a lift of the0-action onX, E′ has a natural structure of a vector
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bundle overM. If πE′
: E′ → M is the bundle projection ofE′, then the pull back byπ is

defined as

π∗E′ = X ×π E′ = {(x, e) ∈ X × E′|π(x) = πE′
(e)}.

If πE : E → X is the bundle projection ofE andπ∗ : E → E′ is the quotient map, then
we get a bundle isomorphismE → π∗E′ by

E 3 e 7→ (πE(e), π∗(e)) ∈ π∗E′.

Therefore, in this representation the liftγ∗ of γ acts on(x, e) ∈ π∗E′ asγ∗(x, e) =
(γ x, e).

Sections into an associated bundleP ×ρ V are just those sections of the bundleP × V

which have the appropriate transformation property. By construction,Eχ is a complex line
bundle overE′, but fromE it inherits the vector bundle structure, so its sections fulfill:

C∞(Eχ) ' C∞(E)0,χ = {
s ∈ C∞(E)|∀γ ∈ 0 : γ ∗s = χ(γ )s

}
. (18)

An analogous equation holds for the line bundleFχ overM. Finally, (18) shows

Eχ = E ×χ C = (π∗E′) ×χ C = (X ×π E′) ×χ C ' E′ ⊗ (X ×χ C) = E′ ⊗ Fχ .

Here, all equalities are immediate from the definitions, besides the last but one, which
may be seen as follows:

(X ×π E′) ×χ C = (X ×π E′ × C)/0

with the0-action

γ (x, e, z) = (γ x, e, χ(γ )z),

whereas

E′ ⊗ (X ×χ C) = E′ ⊗ ((X × C)/0)

with the0-action

γ (x, z) = (γ x, χ(γ )z).

So, both bundles are quotients of isomorphic bundles with respect to the same
0-action. �

Next we want to decompose the Hilbert spaceL2(E) of square-integrable sections ofE into
a direct integral over the character space0̂. On0̂ we use the Haar measure. From the theory
of representations of locally compact groups we need the following character relations for
abelian discrete0, i.e. for abelian, compact̂0 (see e.g. [20], Section 1.5]:

Lemma 5 (Character relations).For γ ∈ 0

∫
0̂

χ(γ ) dχ =
{

1, γ = e,

0, γ 6= e.
(19)
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For χ, χ ′ ∈ 0̂

∑
γ∈0

χ̄(γ )χ ′(γ ) = δ(χ − χ ′) (20)

in distributional sense, i.e. forf ∈ C(0̂)

∑
γ∈0

∫
0̂

χ̄ (γ )χ ′(γ )f (χ) dχ = f (χ ′).

We define for every characterχ ∈ 0̂ a mapping8χ : C∞
c (E) 3 s 7→ s̃χ ∈ C∞(E) by

s̃χ (x) :=
∑
γ∈0

χ(γ )γ∗s(γ −1x). (21)

Since

s̃χ (γ ′x) =
∑
γ∈0

χ(γ )γ∗s(γ −1γ ′x) =
∑
γ∈0

χ(γ ′γ ′−1γ )(γ ′γ ′−1γ )∗s
(
(γ ′−1γ )−1x

)

= χ(γ ′)γ ′∗s̃χ (x)

we have

s̃χ ∈ C∞(E)0,χ = {r ∈ C∞(E)|∀γ∈0Tγ r = χ(γ )r}

which defines a sectionsχ ∈ C∞(Eχ).
Let D be a fundamental domain for the0-action, i.e. an open subset ofX such that⋃
γ∈0γD = X up to a set of measure 0 andγD ∩D = ∅ for γ 6= e.
Then∫

0̂

‖sχ‖2
L2(Eχ )

dχ =
∫

0̂

∫
D

|s̃χ (x)|2 dx dχ

=
∫
D

∫
0̂

∑
γ1,γ2∈0

χ(γ −1
1 γ2)〈γ1∗s(γ

−1
1 x)|γ 2∗s(γ −1

2 x)〉E dχ dx

=
∫
D

∑
γ∈0

|s(γ −1x)|2 dx = ‖s‖2
L2(E)

.

On one hand, this shows that we can define a measurable structure on
∏

χ∈0̂
L2(Eχ) by

choosing a sequence inC∞
c (E) which is total inL2(E). On the other hand, we can see

that the direct integral
∫ ⊕
0̂

L2(Eχ) dχ is isomorphic toL2(E) via the isometry8, whose
inverse is given by

8∗ : (sχ )
χ∈0̂

7→
∫

0̂

s̃χ (x) dχ,

as is easily seen from the character relations (19) and (20).
This shows
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Lemma 6 (Direct integral).The mapping defined by (21) can be extended continuously to
a unitary

8 : L2(E) →
∫ ⊕

0̂

L2(Eχ) dχ. (22)

For the direct integral of Hilbert spacesH = ∫ ⊕
0̂

Hχdχ the set of decomposable bounded

operatorsL∞(0̂,L(H)) is given by the commutant(L∞(0̂,C))′ in L(H). Since commu-
tants are weakly closed andC(0̂,C) is weakly dense inL∞(0̂,C) one has(L∞(0̂,C))′ =
(C(0̂,C))′. Therefore, in order to determine the decomposable operators one has to deter-
mine the action ofC(0̂) onL2(E). This is easily done using the explicit form of8:

Proposition 1 (C(0̂)-action). f ∈ C(0̂) acts ons ∈ C∞
c (E) by

Mf s := 8∗f 8s, (23)

and one has

(Mf s)(x) =
∑
γ∈0

f̂ (γ −1)Tγ s(x), (24)

where

f̂ (γ ) :=
∫

0̂

f (χ)χ̄(γ ) dχ (25)

is the Fourier transform of f. Mf is a bounded operator with norm‖f ‖∞.

Proof. Forx ∈ X one has

(Mf s)(x) = (8∗f 8s)(x) =
∫

0̂

(f 8s)χ (x) dχ =
∫

0̂

f (χ)
∑
γ∈0

χ(γ )γ∗s(γ −1x) dχ

=
∑
γ∈0

f̂ (γ −1)γ∗s(γ −1x).

Sincef is a multiplication operator in each fiber it has fiberwise norm‖f ‖∞, and so havef
andMf = 8∗f 8. �

Corollary 1 (Decomposable operators).Conjugation by8defines an isomorphism between
decomposable bounded operators on

∫ ⊕
0̂

L2(Eχ) dχ and0-periodic bounded operators on

L2(E).

Proof. “⇒” A decomposable operator commutes with theC(0̂)-action, especially with
fγ ∈ C(0̂) which is defined by

f̂γ (γ ′) :=
{

1 if γ = γ ′,
0 else.

By (24) commuting withfγ is equivalent to commuting withγ .
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“⇐” To commute with the0-action means to commute with allfγ for γ ∈ 0. Because
of

fγ (χ) = χ(γ )

thefγ are just the characterŝ̂0 of the compact group̂0, and by the Peter–Weyl theorem
(or simpler: by the Stone–Weierstraß theorem) they are dense inC(0̂). Since the operator
norm ofMf and the supremum norm off coincide the commutation relation follows for all
f ∈ C(0̂) by continuity. �

An unbounded operator is decomposable if and only if its (bounded) resolvent is de-
composable. For a periodic symmetric elliptic operatorD we have a domain of definition
D(D) = C∞

c (X) on whichD is essentially self-adjoint. This domain is invariant forD as
well as for the0-action, and one has [D, γ ] = 0 for all γ ∈ 0. Thus all bounded functions
of D commute with the0-action, and one has:

Theorem 5(Decomposition of periodic operators).The closureD̄ of every periodic sym-
metric elliptic operator D is decomposable with respect to the direct integral

∫ ⊕
0̂

L2(Eχ) dχ .

A core for the domain of̄Dχ is given byC∞(Eχ), and the action ofDχ on C∞(Eχ) '
C∞(E)0,χ is just the action of D as differential operator onC∞(E)0,χ . We haveD̄χ = Dχ ,
whereDχ := D|C∞(E)0,χ , and the closures are to be taken as operators inL2(Eχ).

Proof. Given the remark above we have shown the decomposability already.
C∞

c (X) is a core forD̄, its image under8χ is contained inC∞(E)0,χ and is a core
for D̄χ , since8 is an isometry. On this domain (21) gives the action ofD̄χ as asserted in
the theorem. SinceDχ is a symmetric elliptic operator on the compact manifoldM it is
essentially self-adjoint.̄Dχ is a fiber ofD̄ (which is self-adjoint by, e.g., [2]) and therefore
self-adjoint, thus both define the same unique self-adjoint extensionDχ of Dχ . �

5. Periodic magnetic fields

From now on we assume the existence of a free isometric properly discontinuous action
of a discrete group0 on the Riemannian manifoldX. We assume the action to be cocompact
in the sense that the quotient manifoldM := 0\X is compact. Furthermore, letb ∈ �2(X)

be a quantizable periodic magnetic field so that

db = 0,

[
1

2π
b

]
∈ H ∗(i)

(
H 2(X,Z)

)
⊂ H 2(X,R),

b = π∗bM for a bM ∈ �2(M),

where

π : X → M
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is the projection. The main point is that integrality of(1/2π)bM is not automatic: For a
two-dimensional manifoldX integrality of (1/2π)bM means integrality of the magnetic flux∫
M

bM through one elementary lattice cell, whereas(1/2π)b is integral automatically if e.g.
H 2(X,Z) = 0.

Theorem 6(Periodic magnetic Schrödinger operator).If (1/2π)bM is integral then there
exists a quantization(L, h, ∇) on X such that the corresponding magnetic Schrödinger
operatorHL,∇ is 0-periodic.

Proof. If (1/2π)bM is integral there is a Hermitian line bundleL′ overM with connection
∇′ by Theorem 1, so that curv(∇′) = bM . L′ and∇′ can be pulled back viaπ from M to X,
giving a line bundleL = π∗L′ overX with connection∇ and curvatureb.

The0-action onX induces a0-action onL: Let αγ : X → X be the action ofγ ∈ 0 on
X. Thenπ ◦ αγ = π , and therefore

α∗
γ L = α∗

γ π∗L′ = π∗L′ = L.

Thus,L = {(x, l) ∈ X × L′|l ∈ L′
π(x)} carries a natural0-action by acting on the first

component, using the action onX.
Since∇ is lifted byπ it is automatically0-periodic: because of the proper discontinuity

of the0-action every finite covering ofM by open sets induces a locally finite covering of
X by 0-invariant open sets, and the connection forms ofM can be pulled back to periodic
forms onX. �

Usually one adds a smooth, periodic functionV (the “electric potential”) to get the full
Schrödinger operator. The resulting operator is periodic and elliptic, therefore we can apply
appropriate analytic methods. Especially,HL,∇ is essentially self-adjoint. If0 is abelian
we have the Bloch decomposition:

Theorem 7(Direct integral).For abelian0 the fibers ofHL,∇ are given by
(
HL,∇

)
χ

= H
L,∇
χ with (26)

D
(
HL,∇

χ

)
= C∞(Lχ) = C∞(L)0,χ , (27)

Lχ = L′ ⊗ Fχ, (28)

HL,∇
χ = HL,∇|C∞(L)0,χ , (29)

HL,∇
χ = HLχ,∇χ , (30)

where

∇χ = (∇′ ⊗ id + id ⊗ d)|C∞(L)0,χ . (31)

In other words: every fiber of the magnetic Schrödinger operatorHL,∇ is a magnetic
Schrödinger operator of typeHLχ,∇χ .
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Proof. By Theorem 5,HL,∇ is decomposable, and Eqs. (26)–(29) follow immediately.
Eq. (30) follows forχ = 1 from Leibniz’s rule for connections sinceFχ = M × C in this
case. For allχ , (31) defines, as we have seen in the proof of Lemma 3, a connection for the
quantization class characterized byχ following Theorem 4. Moreover, the explicit form
shows that

∇|C∞(L)0,χ = ∇χ

since∇χ does not depend onχ explicitly. Therefore

HL,∇|C∞(L)0,χ = HLχ,∇χ ,

and the proof is completed by (29). �

Corollary 2 (Bloch theory and quantization).Let (M, g, b) be a quantizable system with
magnetic field over a compact manifoldM. Then the corresponding system(M̃, g̃, b̃) is
(up to equivalence) uniquely quantizable on the universal covering space. Moreover, if
0 := π1(M) is abelian then the magnetic Schrödinger operatorHL̃,∇̃ onL2(M̃) is decom-
posable over̂0, and the fibers occurring are just the equivalence classes of quantizations
of (M, g, b):

HL̃,∇̃ =
∫ ⊕

π̂1(M)

HLχ ,∇χ dχ (32)

“unique quantization above”=“sum over all quantizations downstairs”.

Proof. The system(M̃, g̃, b̃) is periodic and quantizable by construction. Since obviously
H 1(M̃, S1) = {1} the quantization is unique up to equivalence. For abelian0 we can apply
Theorem 7 from which, together with Theorem 4, we get the conclusion. �

Remark 11 (Non-abelian fundamental group).Even if π1(M) is non-abelian one may
choose a homology covering spaceX ofM such that the covering group is abelian(H1(M,Z))
andπ1(X) is finite(the torsion part). Now there is a finite number of classes of quantizations
on X, the set of classes of quantizations onM has a finite number of components. Bloch
analyzing a quantization onX (with respect to the abelian groupH1(M,Z)) now gives
all quantizations onM belonging to one component of̂π1(M), generalizing the previous
corollary. Note that this does not yet allow to decompose the periodic operators onX with
respect to the full non-abelian group̂π1(M).

Remark 12 (Non-commutative Bloch theory).Given the previous remark it is natural to
try to decompose the periodic operators with respect to a non-abelian group. This may
be a group of translations or a variation thereof of the so-called magnetic translations. In
any case there is no good character group0̂ any more which would allow for the Fourier
transform which one uses in the abelian case: the set of irreducible representations lacks
the group structure, the set of one-dimensional representations is too small to describe
the whole group(or the group including the magnetic gauge). But the spaceC(0̂) of
continuous functions on̂0 continues to exist in the non-abelian case in the form of the
reduced groupC∗-algebra of0. This may be viewed as a non-commutative topological
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space or— after recognizing additional natural structures on it— as a non-commutative
Riemannian manifold in the sense of[6].

Depending on the different aims (index and K-theory, transport properties and quantum
Hall effect, spectral theory) and assumptions (free group actions, transitive projective ac-
tions, free projective actions) this observation has been used in different manners. The last
mentioned case relates most to the subject of this paper, and we refer — slightly biased —
to [9,10] and the references therein.
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